Source Code Analysis Tools - Example Programs

Cigital, Inc.
Copyright © 2006 Cigital, Inc.

2006-07-06; Updated 2009-02-16 by Howard F. L2/L2
Lipson®

These example programs demonstrate flaws that may (or may not) be detected by security scannersfor C/
C++ software. The examples are small, ssmple C/C++ programs, each of which is meant to evaluate some
specific aspect of a security scanner's performance. Overall, the evaluation programs can be categorized
as programs used to evaluate the detection of potential vulnerabilities and those used to evaluate resilience
against false darms.

Example 1 — custom_ovf.c
/ *
buffer overflow using a customversion of the strcpy() function

*/

char *stringcopy(char *strl, char *str2)
{
while (*str2)
*gtrl++ = *str2++

return str2

}

mai n(i nt argc, char **argv)

{
char *buffer = (char *)nmalloc(16 * sizeof(char));
stringcopy(buffer, argv[1]);
printf("%\n", buffer);

}

Example2—ex_02.c

/* didn't check for file descriptor tricks */

/* If this is a setuid program the attacker can exec() it after closing
file descriptor 2. The next time the programopens a file, the file
is associated with file descriptor 2, which is stderr. Al output
directed to stderr will go to the newy opened file. In this exanple, the
attacker creates a synmbolic link to the file that is to be overwitten.
The narme of the link contains the data to be witten. Wen the
program detects the synmbolic link, it prints an error nmessage and exits
(line 32), but the error nessage, which contains the synbolic-link nane
supplied by the attacker, is witten into the targeted file.

*/

/* ex_02.c */

#i nclude <fcntl. h>

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/stat. h>
#i ncl ude <sys/types. h>

int
main (int argc, char * argv [])
{

struct stat st;

int fd;

FILE * fp

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/15-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/15-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html

if (argc !'=3) {

fprintf (stderr, "usage : % file nessage\n", argv [0]);
exit (EXI T_FAI LURE) ;

}

if ((fd = open (argv [1], OWRONLY, 0)) < 0) {
fprintf (stderr, "Can't open %\n", argv [1]);
exit (EXI T_FAI LURE) ;

}

fstat (fd, & st);

if (st st_uid !'=getuid ()) {
fprintf (stderr, "% not owner !\n", argv [1]);
exit (EXI T_FAI LURE) ;

}

if (! S_ISREG (st st_node)) {

fprintf (stderr, "% not a normal file\n", argv[1]); // line 32

exit (EXI T_FAI LURE) ;

}

if ((fp = fdopen (fd, "w')) == NULL) {

fprintf (stderr, "Can't open\n");
exit (EXI T_FAI LURE) ;

}

fprintf (fp, "%", argv [2]);
fclose (fp);

fprintf (stderr, "Wite k\n");

exi t (EXI T_SUCCESS) ;

Example3—ex_03.c

/* stat called on filename */

/* This is a sinple race condition,
naned in argv[1l] to a synbolic link after
i s opened.

allowing the attacker to change the file

it's tested but before the file

Many scanners detect the call to stat() on line 23, and while stat() is
al nost certainly a sign of trouble in this particular context, it
needn't always be. A better scanner would actually detect the race
condition between the open on line line 14 and the stat on |line 23.
*/
#i ncl ude <fcntl. h>
#i ncl ude <stdio. h>
#include <stdlib. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/stat.h>
#i ncl ude <sys/types. h>
int
main (int argc, char * argv [])
{
struct stat st;
int fd;
FILE * fp;
while((fd = open("/dev/null", ORDWR)) == 0 || fd==1 || fd==2); //In 14
if (fd > 2)
cl ose(fd);
if (argc !'= 3) {
fprintf (stderr, "usage : % file nessage\n", argv [0]);
exit (EXI T_FAI LURE) ;
}
stat (argv[1l], & st); /1 line 23
if (st st_uid !'=getuid ()) {
fprintf (stderr, "% not owner !\n", argv [1]);
exit (EXI T_FAI LURE) ;
}
if (! S_ISREG (st st_node)) {
fprintf (stderr, "% not a normal file\n", argv[1]);
exit (EXI T_FAI LURE) ;
}
if ((fd = open (argv [1], OWRONLY, 0)) < 0) {
fprintf (stderr, "Can't open %\n", argv [1]);

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

exi t (EXI T_FAI LURE) ;

}

if ((fp = fdopen (fd, "w')) == NULL) {
fprintf (stderr, "Can't open\n");
exi t (EXI T_FAI LURE)

}
fprintf (fp, "%", argv [2]);
fclose (fp);

fprintf (stderr, "Wite k\n");
exi t (EXI T_SUCCESS)

Example 4 — except.cxx

/*
The catch block in this programcontains an exploitable fornat-string
vul nerability. The idea of this test to see whether the scanner can track
taint through the exception-handler. Ideally, the scanner should report
a format string vulnerability on line 32, but not report the unexploitable
format string vulnerability in the conplementary program unexcept.c

*/

#i ncl ude <stdio. h>

#i ncl ude <ctype. h>

#i nclude <string. h>

voi d func()

{
char buffer[1024];
printf("Please enter your user id :");
fgets(buffer, 1024, stdin);
if (!isalpha(buffer[0]))
{
char errornsg[1044];
strncpy(errornmsg, buffer, 1024); /] guaranteed to be terninated
strcat(errornsg, " is not a valid ID'); // we have roomfor this
throw errornsg;
}
}
mai n()
{
try
func();
catch(char * nessage)
fprintf(stderr, message); /1 1ine 32
}
}

Example 5 —filedesc.c

/* If this is a setuid program the attacker can exec() it after closing
file descriptor 2. The next tinme the programopens a file, the file
is associated with file descriptor 2, which is stderr. Al output
directed to stderr will go to the newy opened file. In this exanple, the
attacker creates a symbolic link to the file that is to be overwitten.
The narme of the link contains the data to be witten. Wen the
program detects the synbolic link, it prints an error nessage and exits
but the error message, which contains the synbolic Iink nane supplied by
the attacker, is witten into the targeted file. This isn't nuch different
fromex_02.c, but the latter programwas found on the web clainmng to
be a secure way of opening files. This programis sonewhat sinpler
and, for some scanners, might nake it easier to tell what the scanner
is printing warnings about.

*/

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

#i ncl ude <stdio. h>
#defi ne DATAFILE "/etc/aDataFile. data"

mai n(int argc, char **argv)

FI LE *sensitiveData = NULL;
FILE *l ogFile = NULL;

/* Forgot to account for files 0-2, could be opening stderr. */
sensitiveData = fopen(DATAFILE, "w');

if (!sensitiveData)

{
fprintf(stderr, "%: failed to open %\n",
argv[0], DATAFILE);
exit(l);

}

| ogFile = fopen(argv[1], "w');
if (!'logFile)

fprintf(stderr, "%: failed to open %\n",
argv[0], argv[1]);
exit(1l);
}
}

Example 6 — macros.c

/* This programtests the scanner's ability to handl e preprocessor
directives.
*/

#i ncl ude <stdio. h>

#defi ne SAFESTRCPY(a, b,c) strncpy(a, b, c)
#defi ne FASTSTRCPY(a, b,c) strcpy(a, b)

mai n(int argc, char **argv)
{
size_t size = strlen(argv[3]);
char *buffer = (char *)nmalloc(1024);

#i f def PARANO D

SAFESTRCPY(buf fer, argv[3], size+sizeof(char));
#el se

FASTSTRCPY(buffer, argv[3], sizetsizeof(char));
#endi f
}

Example 7 — overflow.c

/* Secure- Prograns- HOMQ dangers-c. htm */

/* In this program an attacker can supply a large value of |en which
overflows to zero on line 14. Since the subsequent read on line 15
uses the original value of len, the read can overflow the buffer.

Many scanners will flag the read no matter what, which is useful but
doesn't reflect what this programis trying to test. The conplenentary
program notoverflow. ¢ is neant to check whether a scanner is actually
detecting the possible overflow

*/

#i ncl ude <stdlib. h>

void func(int fd)
{

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

/* 3) integer overflow */
char *buf;
size_t len;
read(fd, & en, sizeof(len));

/* we forgot to check the maxi mum |l ength */

buf = malloc(len+l); /1 line 14
read(fd, buf, len); /1 line 15
buf[len] ="'\0'

}

Example 8 —signedness 1.c

/* from Secure-Prograns- HOMQ dangers-c. htm */

/* In this exanple, the attacker-controlled nunber "len" is read as an integer
and even though there is a test to check if it's greater than
the length of the buffer, a negative value for len will be converted to
a large positive value when it gets cast to an unsigned integer in the
second call to read

*/

void func(int fd)

{

/* 1) signedness - DO NOT DO TH S. */
char *buf;
int i, len;

read(fd, & en, sizeof(len));

/* OOPS! We forgot to check for < 0 */
if (len > 8000) { error("too large length"); return; }

buf = malloc(len);
read(fd, buf, len); /* len casted to unsigned and overflows */

}
Example 9 — simplefopen.c

/* This is a sinple resource-spoofing vulnerability where the characteristics
of a fopened file are conpletely unchecked. (Oten this would be called a
race condition as well, but technically it isn't since the necessary checks
are mssing entirely.) First-generation scanners woul d be expected to
generate warnings on this file because of the fopen(). This test is neant
for scanners that don't warn about anything un ex2_unex.c; it checks whether
they just ignore open() calls altogether (ignoring open() isn't what
ex2_unex is testing for, needless to say).

*/

#i ncl ude <stdio. h>

voi d func()
FILE *aFile = fopen("/tnp/tnpfile", "wW');
fprintf(aFile, "%", "hello world")

fclose(aFile)

}

Example 10 — strmacro.c

/* does the scanner understand preprocessor directives? */

/* This file tries to fool the scanner by meking "strcpy" look like a variable
instead of a function

*/

#defi ne STRI NGCOPY strcpy

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

int main(int argc, char **argv)

char *buffer = (char *)nmalloc(1024);
STRI NGCOPY(buffer, argv[3]);
}

voi d func()
{

/* ideally this should not generate a warni ng because "strcpy" is
just being used as the nane of a variable (and in fact it's dead
code) .

*/

int strcpy =0
strcpy = strcpy + 1

Example 11 — strncat_loop.c

/* Technically the buffer in this program has enough roomfor all the
strncats, but the programmer forgot to terminate the buffer before
the strncats start. Therefore line 7 contains a potential buffer
over f | ow.

*/

mai n(i nt argc, char **argv)

{
char *buffer = (char *)malloc(101);
int i

for (i =0; i < 10; i++)
strncat (buffer, argv[i], 10); /Il line 7

Example 12 — strncat_|loop2.c

/*
In this programstrncat is called ten tines in a |oop, but the buffer
receiving that data isn't big enough, so there's a potential buffer
overflow on line 9

*/

mai n(int argc, char **argv)

{
char *buffer = (char *)malloc(11);
int i

buffer[0] =0

for (i =0; i < 10; i++)
strncat (buffer, argv[i], 10); /1 line 9

Example 13 — strncat_ovf.c

/* forgot to null-termnate the strncpy */

/* strncpy doesn't automatically null-terminate the string being copied
into. In this exanple, the attacker supplies an argv[1l] of length ten
or nore. In the subsequent strncat, data is copied not to buffer[10]
as the code suggests, but to the first location to the left of buffer[0]
that happens to contain a zero byte

*/

mai n(i nt argc, char **argv)
{

char *buffer = (char *)malloc(101);

strncpy(buffer, argv[1l], 10);
strncat (buffer, argv[2], 90);

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

Example 14 — strncat_ovf2.c

/* another strncat to into an unterm nated buffer. */

mai n(int argc, char **argv)
{

char *buffer = (char *)malloc(101);

strncat (buffer, argv[2], 90);
}

Example 15 —strncpyl.c

/*
In this exanple, the attacker controls the third argunent of strncpy,
maki ng it unsafe.

*/

#i ncl ude <stdio. h>

mai n(i nt argc, char **argv)
{
int incorrectSize = atoi(argv[1]);
int correctSize = atoi(argv[2]);
char *buffer = (char *)malloc(correctSize+l);

/* nunber of characters copied is based on user-supplied value */

strncpy(buffer, argv[3], incorrectSize);

Example 16 — truncated.c

/* Secure- Prograns- HOMQ dangers-c. htm */

/* This programcontains an integer truncation error. Superficially it |ooks
i ke a safe program even though the variable len is tainted and
len is used to determ ne the nunber of bytes read on line 18. It seens
as though the buffer is large enough to acconpdate whatever data ends
up being placed there by the read statnent. However, the program has
a custom zed malloc function that takes an int argument, so in reality
the malloc on line 3 doesn't always see the sane argunent as the read on
line 18. A value of len larger than 2*MAXINT allows a buffer overflow on
line 18

This exanple is somewhat contrived because of the |arge amount of nenory
that would have to be allocated for an exploit to succeed. On many
architectures, len cannot be greater than 2* MAXI NT.

*/

#i ncl ude <stdlib. h>

void *mymal | oc(unsigned int size) { return malloc(size); } I/l line 3

void func(int fd)
{

/* An exanple of an ERROR for sone 64-bit architectures,
if "unsigned int" is 32 bits and "size_t" is 64 bits: */

char *buf;
size_t len;

read(fd, & en, sizeof(len));

/* we forgot to check the maxi mum | ength */

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

}

/* 64-bit size_t gets truncated to 32-bit unsigned int */
buf = nymal |l oc(l en);
read(fd, buf, len); /1 line 18

Example 17 — umaskopen.c

/*
/*

forgot to set umask */

umask() controls the permi ssions of created by the open call, but the
perm ssion mask is passed to the child process in an exec(). If this
is a setuid program the attacker can set a perm ssion mask that nakes
these files world-witable, but the newfile may be a systemcritica
one. In this program the programmer uses the umask that existed when
the programwas exec()ed, but that umask nmight be controlled by an
attacker

*/

#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>

#i ncl ude <sys/stat. h>

#i ncl ude <fcntl. h>

mai n()

{
int fd;
FILE *fp;
/* no file descriptor confusion */
while((fd = open("/dev/null", ORDWR)) ==0 || fd==1 || fd == 2)
if (fd > 2)

cl ose(fd);

/* file is in user-unwitable directory */
fp = fopen("/etc/inportantFile", "w')
fclose(fp);

}

Example 18 — umaskopen2.c

/* based on the incorrect statement: "unmnask sets the umask to mask & 0777."

*/

in the umask nan page

/* Inreality umask sets the mask to 0777 & ~nmask, which is also

contrary to the convention for chnod that nost people are accustoned to
(However, the correct usage is given |ower down on the umask man page).

Bel ow, the programmer uses unmask to give the rest of the world full access
to the newly created file while denying access to himor herself, which
can safely be assumed to be a progranmng error

*/
#i ncl ude <stdio. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>
mai n()
{
int fd;
FILE *fp;

/* no file descriptor confusion */

while((fd = open("/dev/null", ORDWR)) == 0 || fd == 1 || fd == 2) ;
if (fd > 2)

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

cl ose(fd);

umask(700); /* set permissions to ----rwxrwx */
/* fileis in user-unwitable directory */
fp = fopen("/etc/inportantFile", "w')

fclose(fp);

Example 19 — underflow.c

/* Here, the developer is getting a pathname as an argunent and wants
to find the first path conponent. The error is that the path
in str mght start with a'/', in which case len is zero and
len-1 is the largest value possible for a size_t. In that particular
case the strncpy in the else clause is no safer than a strcpy.

*/

#include <stdlib. h>
voi d func(char *str)
char buf[1024];

size_t len;
char *firstslash = strchr(str, '/"');

if (!firstslash)
strncpy(buf, str, 1023); /* leave roomfor the zero */
buf[1023] = 0

el se

{

len = firstslash - str; /* length of the first path conponent */

if (len > 1023)
len = 1023

strncpy(buf, str, len-1); /* cut the slash off. Only copy len-1
characters to avoid zero padding. */
buf[len] =0

Example 20 — vptrl.cxx

/* The principle here is that incorrectly casting a pointer to a C++
obj ect potentially breaks the abstraction represented by that object,
since the (non-virtual) methods called on that object are determ ned
at conpile-tinme, while the actual type of the object might not be
known until runtine. In this exanple, a seenmingly safe strncpy causes
a buffer overflow (In gcc the buffer overflows into object itself
and then onto the stack, for this particular program Wth sone conpilers
the overflow might nodify the object's virtual table.)

It's hard to say what a scanner should flag in this test file. In ny
opinion the only casts allowed should be virtual menber functions that
cast the this pointer to the class that owns them (e.g., As()
functions) and | think that prevents this type of vulnerability.

*/

#i ncl ude <stdio. h>
#i ncl ude <string. h>
class Stringg

{
b

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

class LongString: public Stringg
{

private:

static const int naxLength = 1023;
char contents[1024];

public:

void AddString(char *str)
{
strncpy(contents, str, maxLength);
contents[strlen(contents)] = O;
}
b

class ShortString: public Stringg
{

private:

static const int maxLength = 5;
char contents[6];

public:

void AddString(char *str)
{
strncpy(contents, str, maxLength);
contents[strlen(contents)] = O;
}
b

void func(Stringg *str)

{
LongString *Istr = (LongString *)str;
| str->AddString("hello world");

}

mai n(int argc, char **argv)
{
ShortString str;

func(&str);
}

Example 21 —adlias.c
/*

This file is meant to test whether a scanner can perform pointer
alias analysis. Since that capability is generally only useful if the
scanner provi des sone datafl ow anal ysis capabilities, dataflow

anal ysis i s needed too.

The variable that determ nes the size of a string copy is untainted,
but alias analysis is needed to determ ne this.

*/
int main(int argc, char **argv)
{
int len = atoi(argv[1]);
int *lenptr_1 = & en;
int *lenptr_2 = lenptr_1;
char buffer[24];
*lenptr_2 = 23;
strncpy(buffer, argv[2], *lenptr_1);
}

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

Example 22 — const_strl.c

/* unexpl oitabl e strcpy #1 */

/* This program contains a buffer overflow, but the overflow ng data
isn"t controlled by the attacker. ldeally, a scanner should either not
report a buffer overflow associated with this strcpy, or at nost report
a problemwith |ower severity than a strcpy whose argunent is attacker-

controlled
*/
mai n()
{
char *buffer = (char *)nmalloc(10 * sizeof(char));
strcpy(buffer, "f000") ;
}

Example 23 — const_str2.c

/* unexpl oi tabl e strcpy #2 */

/* This program contains a buffer overflow, but the overflow ng data
isn't controlled by the attacker. ldeally, a scanner should either not
report a buffer overflow associated with this strcpy, or at npst report
a problemw th |ower severity than a strcpy whose argument is attacker-
control |l ed

The programis similar to const_strl.c, but it presents a slightly
harder problem for the scanner. In const_strl.c, and scanner could
notice that the argunent to strcpy is a constant string by |ooking for the
quote synmbol that follows the open parenthesis after the name of the
function. In this program sonme sort of dataflow analysis is needed
(taint checking should be enough).

*/

voi d func(char *foo)

{ char *buffer = (char *)nmalloc(10 * sizeof(char));
strcpy(buffer, foo);

}

mai n()

} func ("f000") ;

Example 24 — const_str3.c

/* unexpl oitable strcpy #3 */

/*
This is another buffer overflow using a non-user-defined. Here, the
constant string is placed into a variable rather than bei ng passed as
a function argunent like in const_str2.c. However, taint analysis should
still be enough to let the scanner recognize that the overflowi ng string
is not user-controlled

A scanner should either not report a buffer overflow associated with
this strcpy, or report a problemwth |ower severity than a strcpy whose
argunent is attacker-controlled

*/

mai n()

{
char *foo = "f000"
char *buffer = (char *)nmalloc(10 * sizeof(char));
strcpy(buffer, foo);

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

11

Example 25 —-ex_02_unex.c

/* believed unexpl oi table open/wite */

/* This program ensures that stdin, stdout and stderr are accounted for,
and then opens a file, ensuring that access checks are perforned on
the actual object being opened. The program doesn't set the umask, but that
isn't necessary because the umask only affects the perm ssions of newy
created files, and in this programopen is called w thout the O CREAT
flag and therefore will only open a pre-existing file.

A scanner should not report TOCTQU vul nerabilities, file descriptor
vul nerabilities or umask-related vul nerabilities.
*/

/* ex_02.c */

#i nclude <fcntl. h>

#i ncl ude <stdio. h>
#include <stdlib. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/stat. h>
#i ncl ude <sys/types. h>

int
main (int argc, char * argv [])
{
struct stat st;
int fd;
FILE * fp;
while((fd = open("/dev/null", ORDWR)) == 0 || fd == 1]| fd == 2) ;
if (fd > 2)
cl ose(fd);
if (argc !'= 3) {
fprintf (stderr, "usage : % file nessage\n", argv [0]);
exi t (EXI T_FAI LURE) ;
}
if ((fd = open (argv [1], OWRONLY, 0)) < 0) {
fprintf (stderr, "Can't open %\n", argv [1]);
exi t (EXI T_FAI LURE) ;
}
fstat (fd, & st);
if (st . st_uid !=getuid ()) {
fprintf (stderr, "% not owner !\n", argv [1]);
exi t (EXI T_FAI LURE) ;
}
if (! S ISREG (st . st_node)) {
fprintf (stderr, "% not a normal file\n", argv[1]);
exi t (EXI T_FAI LURE) ;
}
if ((fp = fdopen (fd, "w')) == NULL) {
fprintf (stderr, "Can't open\n");
exi t (EXI T_FAI LURE) ;
}
fprintf (fp, "%", argv [2]);
fclose (fp);
fprintf (stderr, "Wite k\n");
exi t (EXI T_SUCCESS) ;
}

Example 26 —fixedbuffl.c

/* variabl e-sized buffer that syntactically |ooks like fixed-sized buffer #1 */

/* Many security scanners generate a warni ng when they see a fixed-sized
buffer. This test program declares a variabl e-sized buffer based on
the length of the string that's going to be copied into it, but it
uses a syntax nore conmonly associated with fixed-sized buffers. It's

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

meant to determ ne whether a scanner detects fixed-sized buffers by | ooking
for square brackets after the variable nane or whether it actually parses
the declaration

A scanner should not conplain about a fixed-sized buffer being used
in this program
*/

#i ncl ude <string. h>
voi d func(char *src)

char dst[(strlen(src) + 1) * sizeof(char)];
strncpy(dst, src, strlen(src) + sizeof(char));
dst[strlen(dst)] = 0;

}

Example 27 —fixedbuff2.c

/* variabl e-sized buffer that syntactically |ooks |ike fixed-sized buffer #2 */

/* This is another variant of a variable-sized buffer being nmade to
syntactically resenble a fixed-sized buffer. It has the added twi st
the buffer mght be to small if useString is called incorrectly, in spite
of which there is no buffer overflow here because useString -is- called
correctly (and is inaccesible fromother source files).

A scanner should not conplain about a fixed-sized buffer or a potentia
buf fer overfl ow.
*/

#incl ude <string. h>
static void useString(size_t len, char *src)

char dst[(len+l) * sizeof(char)];
strncpy(dst, src, strlen(src));
dst[strlen(src)] =0

}

voi d func(char *src)

{

size_t len = strlen(src);

useString(len, src);

}

Example 28 — fixednamefopen.c

/* This programopens a file with a fixed name in a directory that
shouldn't normally be accessible to an attacker. |f, for some reason
the attacker has gained wite access to /etc, this programcoul d be used
to overwite files in other places, but the vulnerability is |ess
serious than it would be if it opened a file in a directory that's normally
writable.
*/

#i ncl ude <stdio. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

mai n()

{
int fd;
FI LE *fp;

/* no file descriptor confusion */

while((fd = open("/dev/null", ORDWR)) == 0 || fd==1 || fd == 2)
if (fd > 2)
cl ose(fd);

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

/* set umask */

umask(022);

/* fileis in user-unwitable directory */
fp = fopen("/etc/inportantFile", "w');

fclose(fp);

Example 29 —intarray.c

/* Anal yzer must resolve typedef to determine the data type of an array. */
typedef char gchar;
voi d func()

gchar buf[10];
}

Example 30 — notoverflow.c

#i ncl ude <stdlib. h>

/* This programdoesn't contain an integer overflow on line 15
because the length of the variable len is checked. It's neant
to conpl ement overflow.c, to check if buffer overflow warnings
for that programare just vacuously triggered by the read()
call or if the scanner is actually spotting the overflow.

A scanner shoul dn't conplain about an integer overflow on line
15 or a buffer overflow on |line 16.

*/

void func(int fd)
{

char *buf;

size_t len;
read(fd, & en, sizeof(len));

/* check the maximum |l ength. No need to check for negative nunbers since
size_t is unsigned already. */

if (len > 1024)

return;
buf = malloc(len+l); /1 line 15
read(fd, buf, len); /1 line 16
buf[len] = "'\0";

}

Example 31 — nottruncated.c

/* This program conplenents truncated.c, which is taken fromthe |inux
secure progranm ng HOMO. It avoids the integer truncation problem of
truncated.c, and it's meant to test whether a scanner that reports a
buffer overflow for truncated.c is doing so vacuously or whether it
actual ly noticed the possible integer truncation.

In this program the devel oper has defined a custom

version of the malloc function which takes an int argunent, and
thereby creates the possibility of an integer truncation vulnerability,
but bounds-checki ng prevents the malloc on line 1 from seeing

a different length value than the read on line 16.

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

14

This programdiffers fromnottruncated2.c because both

nymal | oc and read take the original user-controlled size_t len as an
argunent, but those calls are unreachable for values of len that would
cause truncation probl ens.

Ideally, a security scanner should not report a possible bounds

violation on line 15 or a buffer overflow on line 16
*/

#i ncl ude <val ues. h>
#incl ude <stdlib. h>
void *mymal | oc(unsigned int size) { return malloc(size); } // line 1

void func(int fd)

{

char *buf;

size_t len;

read(fd, & en, sizeof(len));

if (len > MAXI NT)

return;

buf = nymal |l oc(l en); /1 line 15

read(fd, buf, len); /1 line 16
}

Example 32 — nottruncated2.c

/* This program conplenents truncated.c, which is taken fromthe |inux
secure progranm ng HOMO. It avoids the integer truncation probl em of
truncated.c, and it's nmeant to test whether a scanner that reports a
buffer overflow for truncated.c is doing so vacuously or whether it
actual ly noticed the possible integer truncation

Inthis file, we read a tainted integer and use it to determi ne the size
of a subsequent read of a tainted string. But the buffer recieving the
data during the second read is allocated according to user provided |length
and read will only put that nmany bytes in the buffer, so there should

be no overfl ow

In this particular variant of the program the user has defined his

own version of the malloc function which takes an int argunent and

thereby creates the possibility of an integer truncation vulnerability.
However, the programcasts "len" to an integer and thereby ensures that the
second argunent to read (line 18) is the sane nunber as the argunent of
nymal l oc on line 17

Ideally, a security scanner should not report a possible bounds

violation on line 17 or a buffer overflow on line 18
*/

#i ncl ude <val ues. h>
#include <stdlib. h>
void *mymal | oc(unsigned int size) { return malloc(size); }

void func(int fd)
{

char *buf;
size_t len;
int actual _len

read(fd, & en, sizeof(len));

actual _len = len

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

buf = nymal | oc(actual _| en); /1 line 17
read(fd, buf, actual _len); /1 line 18

}

Example 33 —signOK.c

/*
This program avoids a sign error by checking of the variable len is
negative. It conplenents signedness_1l.c, where an attacker can create
a buffer overflow by specifying a negative nunber for len

A scanner should not report a buffer overflow on line 11
*/

void func(int fd)

char *buf;
int i, len;

read(fd, & en, sizeof(len));
if (len <0 || len > 7999) { error("too large length"); return; }

buf = nmall oc(8000);
read(fd, buf, len); /1 line 11

}

Example 34 — strncat.c

/*
Thi s program uses strncpy and strncat safely, without introducing a
buffer overflow. It's nmeant to check whether a scanner warns vacuously
about strncpy and strncat, or if it actually checks whether the sizes are
OK and whether the buffer is termnated after the strncpy.

A scanner should not report a buffer overflowon line 5 or line 7
*/

mai n(i nt argc, char **argv)

{
char *buffer = (char *)nmalloc(25);
strncpy(buffer, argv[1l], 10); /1 line 5
buffer[10] = 0
strncat (buffer, argv[2], 10); /Il line 7
}

Example 35 — strsave.c

/* believed safe invocation of strcpy */

/* This use of strcpy ensures that the buffer is large enough to
acconpdate the string being copied. The datafl ow anal ysis needed
to verify this ney be too conplex to be acconplished with sinple
tai nt checking

A scanner should not warn of a buffer overflow error on line 9
*/

#i ncl ude <string. h>

char *strsave(char *src)

{
size_t len = strlen(src);
char *result = (char *)nmalloc((len+l) * sizeof(char));
if (result)
strcpy(result, src); /1 line 9
Source Code Analysis Tools - Example Programs 16

ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

return result;

}

Example 36 — strsave2.c

/*
This use of strcpy ensures that the buffer is large enough to
acconpbdate the string being copied. The datafl ow anal ysis needed to
determ ne whether the strcpy is safe is sonewhat nobre conpl ex that
in strsave.c

A scanner should not warn of a buffer overflow error on line 5
*/
#incl ude <string. h>

static void copyString(char *dst, char *src)

{
strcpy(dst, src); /1 line 5
}
char *strsave(char *src)
{
size_t len = strlen(src);
char *result = (char *)malloc((len + 1) * sizeof(char));
if (result)
copyString(result, src);
return result;
}

Example 37 —terminated.c

/*
In this program the target string is properly term nated but
the terminating null is added before the strncpy(), which m ght
fool a scanner into thinking that the buffer is unterninated

A scanner shoul d not conplain about an unterminated strncpy().

*/

void func(char *str)

{
char target[(strlen(str) + 1) * sizeof(char)];
target[strlen(str)] = 0;
strncpy(target, str, strlen(str));

}

Example 38 — unexcept.c

/*
The catch block in this program contains an unexploitable format-string

vul nerability. The idea of this test to see whether the scanner can track
taint through the exception-handling mechanism Ideally, the warning given

by the scanner for line 31 should have |ower severity than the
corresponding (exploitable) format-string vulnerability in except.c
*/

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>

voi d func()

{
char buffer[1024];

printf("Please enter your user id :");
fgets(buffer, 1024, stdin);

if (!isalpha(buffer[0]))

Source Code Analysis Tools - Example Programs
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

17

char errornsg[1044];

strcpy(errornsg, “that isn't a valid ID");
throw errornsg;

func();
catch(char * nessage)

fprintf(stderr, message); /1 line 31

}
}

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including
information about “Fair Use,” contact Cigital at copyright@cigital .com®.
The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),

National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

Source Code Analysis Tools - Example Programs 18
ID: 498-BS| | Version: 17 | Date: 4/9/09 10:11:14 AM

mailto:copyright@cigital.com

